SECURE PHONE LOCKER WITH INTEGRATED NOTIFICATION TRACKING (SPLINT)

Group D	
Alex Masterson	CpE & EE
Evelin Santana	EE
lan Flemings	EE
Nick Lucas	EE

The Problem We Observed

- Some Facilities Have Cell Phone Restrictions
 - RF Testing
 - Sensitive Information
 - Distractions & disruptions
- Current solutions are inefficient
 - -Phones left unsecured
 - -Has Potential to be stolen or damaged
 - -Lacks any means of relaying emergency notifications

Our Solution to the Problem

- Keep your phone safe & secured
- Keep phone charged
- Detect Important Notifications
- Relay the detected notifications to a computer terminal.

Engineering Requirements

Specification	Requirement
Power Consumption	< 400 Watts
Microphone detection	80+ dB
Vibration Detection	10Hz-400Hz
Damping Between Compartments	10dB
Fingerprint Detection Accuracy	>90%
Single locker footprint (maximum)	12" L x 12" W x 12" H
Sensor Actuation-Transmission Delay	<5 seconds

Our Design Approach

- Widely Applicable
 - Low Cost
 - Minimize Overhead
 - Modular and Expandable
 - Nothing Device Specific

Block Diagram

Security Design Decisions

Goals

- Electrically Controlled Locking Mechanism
- Strong and Secure Authentication Method
- Low Cost Design

Locking Mechanism Selection

Туре	Pros	Cons
Electromagnetic	•Tamper Resistant •Strength increases with current	•Requires Constant Power •Expensive & Large
Linear Solenoid Bolt	Low power requirementInexpensiveSmall in Size	Not very heavy dutyLocked out if power is lost
Motorized Electric Latch	Only requires power during state changeAllows manual key override	Large in sizeMoving parts
Linear Solenoid Latch	Power effectiveCost effectiveSmall yet Strong	•Can be locked out if power is lost

Lock Selection

Product	Voltage DC (Volts)	Current (Amps)	Dimensions (cm)	Price
Uxcell Open Frame Type Solenoid for Electric Door Lock	12	1.3	6.6 x 4.2 x 3	\$16.14
Uxcell 10mm Stroke Force Open Frame Type Solenoid for Electric Door Lock	12	1.0	6.4 x 2.6 x 2	\$9.92
Amico 0837L Open Frame Type Solenoid for Electric Door Lock	12	0.6	6.6 x 4.0 x 2.7	\$6.21
ATOPS Ultra-Compact New Cabinet Door Solenoid Electric Lock Assembly	12	.35	2.7 x 2.9 x 1.8	\$4.75
UHPPOTE File Display Cabinet Drawer Latch Assembly Solenoid Electric Lock	12	.6	5.45 x 4.1 x 2.8	\$12.50

Latched Position

De-Latched Position

Authentication Method Selection

Goals

- Difficult to Falsify or Cheat
- Easy to Setup
- User Friendly
- Cost effective

Authentication Method Selection

Туре	Pros	Cons
Integrated Circuit Card	 Low power requirement Can incorporate Some Existing Company ID's Inexpensive 	 Card can be misplaced, lost or stolen. Work Wears out and needs replacement
Numeric Keypad	Low power requirementInexpensive to implement	Requires memorizationVulnerable to eavesdroppingTakes up a lot of space
Near Field Communication (NFC Chip)	Very compactMore secure than keypadLow power requirement	Can be misplaced, lost or stolenMight not be allowed in some buildings
Fingerprint Scanner	Highly SecureCant be misplacedNo memorization requiredDifficult to replicate or fool	•Can't be shared •Costs more than other methods

Fingerprint Module Selection

Fingerprint Scanner	GT-511C1R	R303	R306	EM406
Manufacturer	ADH-Tech	Grow	Grow	HF Security
Туре	Optical	Capacitance	Capacitance	Optical
Communication	UART	UART	UART	UART
resolution(dpi)	450	508	363	508
Price	\$31.95	\$28.00	\$38.00	\$42.99
Operating Current(mA)	<100	<55	<60	<100
Fingerprint Storage #	20	1000	1000	1000
Voltage (V)	5	5	5	5

R303 Sensor Module

Security Microcontroller Selection

Controller Requirements

- UART for Fingerprint Module
- Enough GPIO pins for:
 - -Buttons
 - -Status LED's
 - -Lock Trigger
 - -Lock State Output

Security Microcontroller Selection

	MSP430G2553	MSP430FG4618	ATMEGA328	ATtiny417
CPU	MSP430	MSP430	AVR	AVR
Non-volatile Memory (KB)	16	116	32	4
GPIO Pins (#)	25	80	23	6
UART	1	1	1	1
ADC Channels	8	12	8	4
Active Power (uA/MHz)	330	400	200	200
Wakeup Time (us)	1.5	13	60	60
Price	\$1.50	\$7.54	\$2.88	\$0.80

Security Circuit

Damping Problem & Solution

- Noisy Neighbor Problem
 - Proposed Solution:
 - –Damping Pads

-Sound Comparing System

Sound Damping

 There are multiple mechanical methods for damping sound.

- -Sound blocking material
- Structural damping
- Problems arise.
 - Sound comparing circuit

Sensors Selection

Sound Sensor:Detecting a ringtone

Vibration Sensor:

Detecting vibrations

Sound Sensor Options

Chosen: Electret Microphone

Electret Microphone	Piezoelectric Microphone	MEMS Microphone
Analog Output	Analog Output	Analog or Digital output
Low Cost	High Impedance	Comes with preamp
High Performance	High electrical output	High electrical output
Frequency range 10Hz-20khz	Frequency range 20kHz-10Mhz	Frequency Range: 100Hz-6Khz
More sensitive	Less sensitive	Less sensitive than electret by 12dB

Sound Sensors Circuit

Vibration Sensor Options

- Chosen: Piezoelectric sensor disc
- MEMs Accelerometer: Lower Range, High Sensitivity. Good for structural monitoring & acceleration measurements.
- Piezoelectric disc: Low Sensitivity, Wider Range. Best for converting sound pressure into voltage.

Vibration Sensor circuit

Piezoelectric Sensor Structure

Sensor Circuit to Atmega328

Sensing Controller Selection

- ATMega328P-PU
- Well Documented
- Previous Familiarity
- Readily available libraries for I2C
- Plenty of built in ADCs and Digital pins
- Low cost

But What About Power

Component	Voltage Required	Power Consumption
Atmega328	5V	Low
Beaglebone	5V	Low
Level Shifter	5V & 3.3V	Low
Sensing circuit	5V	Low
Fingerprint sensor module	5V	Low
Latch	12V	High
USB port	5V	High

Rail Connections

12V 5V

Latch Atmega328

USB power module Beaglebone

Sensing circuit

Fingerprint sensor module

Level Shifter

Overall Top Level Power Circuit

Regulator

Level Shifter

- Minimize necessary components
- Allow for mixed logic levels
- Bi-directional

USB Charging Circuit

USB Charging Circuit PCB

Communication Controller

Controller	Advantages	Disadvantages
Arduino ATMega	Cheap Easy to Use Power Efficient Multiple Analog/Digital Pins	Slow Low Level Low Memory
Beaglebone Black	Fast Processor Multiple Analog/Digital Pins Ethernet Linux & Android compatible	Poor Documentation High Cost
Rhasberry Pi	Fast Processor Large RAM USB	No analog GPIO pins
MSP430	Power Efficient Scalable Small Size Many GPIO Pins	Slow Low Level Low Memory

12C Communication

- BBB and ATMega both support I2C communication.
- Only requires two bus lines.
- We have two topologies for setting up I2C:
 - -Single Master Multiple Slave
 - -Multi Master Single Slave

12C Communication

Multi Master Single Slave Topology

BeagleBone Cape

BeagleBone Cape

Software Flowchart

Work Distribution Priority

Name	Power System	Security System	Sensors	Programming
lan	Secondary	Primary		
Nick	Primary	Secondary		Secondary
Evelin			Primary	Secondary
Alex				Primary

Per Unit Material Cost

Major Component	Manufacturer	Unit Price (Bulk)	Quatity	Total Cost Per Unit
R303 Fingerprint Module	Hangzhou Grow Technology Co Ltd.	\$26.00	1.00	\$26.00
Solenoid Latching Lock	ATOPS	\$3.04	1.00	\$3.04
Atmega328p	Atmel	\$1.81	2.00	\$3.62
BeagleBone Black	BeagleBoard	\$56.25	0.33	\$18.75
Electret Microphones	Uxcel	\$0.40	2.00	\$0.80
Vibration Sensor	CUI Inc	\$0.77	1.00	\$0.77
Power Supply		\$15.99	1.00	\$15.99
Miscellaneous Smaller Components	Varies	\$10.00	1.00	\$10.00
Locker Containter Wood and Hardware		\$6.50	1.00	\$6.50
			Total Cost (for 3)	\$85.47
			Cost Per Locker	\$21.37

